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Abstract: The preparation of seven dewterium labelled N-acetyl cysteamine thioesters (2a), (2b), (3a), (3b), (4), (5)
and (6) as putative biosynthetic precursors of the acyl tetronic acid ionophore 1etronasin is described.

In the preceding two Letters we have discussed incorporation experiments, with proposed tri- and
tetraketide precursors in the biosynthesis of the ionophore antibiotic tetronasin (1), the results of which are
shown in Scheme 1.! Here we report the synthetic routes used to prepare the deuterium labelled compounds
(2a), (2b), (3a), (3b), (4), (5) and (6) that were required for our studies.
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The routes to these N-acetyl cysteamine thioester derivatives were designed to be flexible in order to
access the maximum number of compounds. Those compounds labelled at the C-2 methyl group (i.e. all
except (3b)) were produced via a linked synthetic route and their preparation shall be dealt with together . The
C-8 labelled analogue (3b) was produced via a different route and will be dealt with independently of the
others.

Synthesis of the tri- and tetraketide anaiogues (2a), (2b), (3a), (4), (5) and (6).

Scheme 2 shows synthetic routes leading to the triketide analogues. The racemic form of the acyl
residue was produced by methylation of the di-anion of (4E)-hexenoic acid.2 The homochiral forms were
prepared using Evans chiral oxazolidinones3 to direct the addition of the CD3 group followed by cleavage of
the auxi(liiary under standard conditions.4 All three acids were coupled with N-acetyl cysteamineS using DCC-
DMAP.
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Scheme 2: (i) LDA 2 equiv., THF, 0°C; 5 equiv. CD3l (78%). (ii) N-acetyl cysteamine, DCC, DMAP, CH,Cl

(70%). (iii) nBuLi, THF; then add to mixed anhydride formed from (4E)-hexencic acid, Et3N, Me3COCIl, THF (91%).

(iv) NaN(SiMe3),, THF, -78°C; 5 equiv CD3l (65%). (v) LiOH, H203, THF-H20 3-1 (95%).

The four diastereoisomers of the tetraketide were synthesised by complementary routes employing an
aidoi reaciion of different propionaie derivatives with the common aidehyde {7). This was produced from ihe
intermediate (8), itself prepared by a method analogous to that shown above in Scheme 2.
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(i) LiAlH4, Et20, 0°C (70%). (ii) (COCl)3, DMSO, CH)Cly, -78°C; then Et3N, -30°C (87%).

The tetraketide precursors (3a) and (4) having an anti relationship between the C-2 and C-3 centres
were produced by employing a Heathcock anti aldol condensation’, between 2',6'-dimethylphenyl-[3-2H3)-

propionate (9) and the aldehyde (7) as shown in Scheme 3.
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Scheme 3: (i) nBuLi, THF, 0°C; then acetyl chloride (100%). (ii) NaN(SiMes )2, THF, -78°C; 5 equiv. CD31 (67%).
(iii) LDA, -78°C, 45 min; then -118°C and add (7) and warm to -78°C (53% overall). (iv) KOH 5 equiv, dioxan-H,0
30-1. (v) (PhCH3)2NH 1.05 equiv, recrysiallise from EtoO/hexanes (87% overall over two steps ; 55% of (10), 32% of
(11)). (vi) Dowex S0-H* (99%). (vii) N-acetyl cysteamine, DCC, DMAP, CH2Cl; (54%).
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The reaction produced a mixture of two diastereoisomers that were separated by conversion to the
dibenyzlammonium salts (via the acids), followed by recrystallisation from ether/hexane to give the pure
diastereomeric salts (10) and (11).3 These salts were reconverted to the acids by treatment with Dowex-50
(H* form) and coupled to N-acetyl cysteamine as before to give (3a) and (4).5.6

The two isomers (5) and (6) having a syn relationship between the C-2 and C-3 centres were prepared
using Evans' syn aldol methodology? as shown in Scheme 4. Thus condensation of the boron enolates of the
CDj3-propionate oxazolidinones (12) with the aldehyde (7) under standard conditions? gave the
diastereomerically pure products (13) and (14).8 Hydrolysis of the auxiliary under standard conditions?
followed by coupling of the resulting acids to N-acetyl cysteamine gave the derivatives (§) and (6) as shown.
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Scheme 4: (i) nBuLi, THF, 0°C; then acetyl chloride (99%). (i) NaN(SiMe3);, DMPU 10 equiv., THF, -78°C;
equiv.CD31 (74%). (i) BuzBOTY, iPraEN, CH2Cly, 0°C; then -78°C and add (7) (65%). (iv) LiOH, HyO4, THF-H30
3.1, 0°C (95%). (v) N-acetyl cysteamine, DCC, DMAP, CHaCl (57%).

Synthesis of the tetraketide analogues (3b).

The synthesis of (3b), the precursor that was required to complete our biosynthetic studies,!® was achieved as
shown in Scheme 5. The preparation of the initial building block (15) is reported in a subsequent paper in this
series, since it is also a precursor for the C19-C26 tetrahydrofuran fragment required for the total synthesis
studies.10 Compound (15) was reacted with triethyl phosphonoacetate, using the Masamune-Roush
conditions,!1 to give an intermediate homologated ester which upon reduction with DIBAL-D!2 gave the
deuteriated allylic alcohol (16). This was further reduced via conversion to the corresponding chloride, using
tosyl chloride in CH2Clz containing DMAPI3 and teatment with lithium triethyl borodeuteride (Super-
Deuteride®) to give the trideuterio derivative (17) in excellent overall yield. Deprotection of (17) with lithium
in ammonia at -78°C,14 and oxidation with tetra-n-propylammonium perruthenate (TPAP)!5 under catalytic
conditions gave the aldehyde (18) also in excellent yield. The last steps toward (3b) were then straightforward.
Oxidation of (18) with sodium chlorite, using 2-methyl-2-butene as a chlorine scavenger,!6 gave an acid which
was converted to the (3b) on coupling with N-acetyl cysteamine using DCC/DMAP, and subsequent
deprotection with HF/pyridine.
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Scheme § (i) EtO2CH2P(OXOEY)?2, LiCl, DIPEA, CH3CN (93%). (ii} DIBAL-D, THF, -78°C (85%). (iii) TsCl,
DMAP, CH2Cl12 (90%). (iv) LiE3BD, THF, -78°C (85%). (v) LiYNH3, Er20, -78°C (97%). (vi) BPr4NRuO4, NMO,

4A powdered sieves, CH2Clp (95%). (vii) NaCl02, 2-methyl-2-butene, KH2PO4, 'BuOH/H20 (99%). (viii) N-
acetylcysteamine, DCC, DMAP, CH2Cl7 (80%). (ix) HF, pyridine, MeCN (80%).
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