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Abstmct: The preparation of seven deuteriwm labelled N-ace@ cysteamhe thioesters (24, (26). @a). (3b1. (4J. (5) 
and (6) as putative biosynthetic precursors of the acyl tetronic acid ionaphare tetronasin is describea! 

In the preceding two Letters we have discussed incorporation experiments, with proposed tri- and 
tetraketide precursors in the biosynthesis of the ionophote antibiotic tetronasin (1). the results of which ate 
shown in Scheme 1.1 Here we report the synthetic routes used to prepare the deuterium labelled compounds 
(2a), (2b). @a). (3b). (4). (5) and (6) that were required for our studies. 
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The routes to these N-acetyl cysteamine thioester derivatives were designed to be flexible in order to 
access the maximum number of compounds. Those compounds labelled at the C-2 methyl group (i.e. all 
except (3b)) were produced via a linked synthetic route and their preparation shall be dealt with topther . The 
C-8 labelled analogue (3b) was produced via a different route and will be dealt with independently of the 

OttkXS. 

Scheme 2 shows synthetic routes leading to the triketide analogues. The racemic form of the acyl 
residue was produced by methylation of the di-anion of (4E)-hexenoic acid.2 The homochiral forms were 
prepared using Evans chiral oxazolidinonesg to direct the addition of the CD3 group followed by cleavage of 
the auxiliary under standard conditions. 4 All three acids were coupled with N-acetyl cysteamine5 using DCC- 
DMAP.6 

315 



316 

XnH 

0 
Scheme 2: (i) IDA 2 equiv.. THF, O°C; 5 equiv. CD31 (78%). (ii) N-acetyl cysteamine, DCC. DMAP, CH2Cl2 
(70%). (iii) nBuLi, THl? then add to mixed anhydride formed Born (4E)Ae.xencic acid, E@N. Me3COCl, THF (91%). 
(iv) NaNWMe3h. THF, -78°C: 5 equiv CD31 (65%). (v) LiOH. H202, THF-Hfl3-1 (95%). 

The four diastereoisomers of the tetraketide were synthesised by complementary routes employing an 
aldol reaction of different propionate derivatives with the common aldehyde (7). This was produced from the 
intermediate (8). itself prepared by a method analogous to that shown above in Scheme 2. 

(i) LiAIH4, F&O. 0°C (70%). (ii) (COCI)2, DMSO, CH2C12. -78Q then Et3N, -3WC (87%). 

The tetraketide precursors (3a) and (4) having an anti relationship between the C-2 and C-3 centrea 
were produced by employing a Heathcock anti aldol condensation 7, between 2’,6’-dimetbylphenyl-[3-2H3]- 

pmpionate (9) and the aldehyde (7) as shown in Scheme 3. 

cD3 
ArO 

l+ 

. . . 
ArOH i, 111 0 OH iv, v 

Ar = 2,6-(Me&& 

(PhCH2)aNHi - 

(10) G 0 OH vi, vii 

W$flH; $%V - 
0 6H 

! j:_g 

H 0 t)H (4) 

4 
Scheme 3: (i) nBuLi, THF, WC; then acetyl chloride (100%). (ii) NaN(SiMe3~. THp. -7F’C. 5 equiv. CD31 (67%). 
(iii) LDA. -78°C. 45 min; then -1 WC and add (7) and warm to -78°C (53% overall). (iv) KOH 5 equiv, dioxawH20 
30-l. (v) (FWH2@JH 1.05 equiv, recrystallise from EtzO/hexanes (87% overall over two steps ; 55% of (10). 32% of 

(11)). (vi) Dowex 50-H+ (99%). (vii) N-acetyl cysteamiue, DCC, DMAP, CH$l2 (54%). 
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The reaction produced a mixture of two diastereoisomers that were separated by conversion to the 

dibenyzlammonium salts (via the acids), followed by recrystallisation from etherlhexane to give the pure 

diastereomeric salts (10) and (11j.8 These salts were reconverted to the acids by treatment with Dowex-!W 

(H+ form) and coupled to Wacetyl cysteamine as before to give @a) and (4).5-e 

The two isomers (5) and (6) having a syn ~lation~p between the C-2 and C-3 centres were prepared 

using Evans’ syn aldol rne~~ol~gy9 as shown in Scheme 4. Thus condensation of the boron enolates of the 

CDS-propionate oxazolidinones (12) with the aldehyde (7) under standard conditions9 gave the 

diastereomerically pure products (13) and (14). 8 Hydrolysis of the auxiliary under standard conditions‘t 

followed by coupling of the resulting acids to N-acetyl cysteamine gave the derivatives (5) and (6) as shown. 
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S&me 4: (i) nBuLi. THF, WC; then ace&y1 chbide (99%). (ii) NaN(SiMe3)2. DMPU 10 equiv.. TZIF, -78sC; 5 
equiv.CD3f (74%). (iii) Bu2BOTf, i&$&N, C&I&X2. 0°C; then -78°C and a&l (7) (65%). (iv) LiOH, I=&@, TIP-Hfl 
3-1, OT f95%& Iv) Wawtyl cysteamine, DCC_ DMAJ?, CH$12 (57%). 

The synthesis of (3b). the precursor that was requited to complete our biosynthetic studies,*b was achieved as 

shown in Scheme 5. The preparation of the initial building block (15) is reported in a subsequent paper in this 

series, since it is also a precursor for the C19-C26 tetrahydrofuran fragment required for the total synthesis 

studies.10 Compound (15) was reacted with triethyl phosphonoacetate, using the Masamune-Roush 

conditions,tf to give an intermediate homologated ester which upon reduction with DIBAL-D*2 gave the 

deuteriated allylic alcohol (16). This was further reduced via conversion to the corresponding chloride, using 

tosyl chloride in C&C12 containing DMAPD and treatment with lithium t&thy1 borodeuteride (Super- 

Ikueride~ to give the trideuterio derivative (17) in excellent ovemtl yield. Deprotection of (I?) with lithium 

in ammonia at -78”Ct4 and oxidation with ~~-~-p~pyl~monium perrutbenate (TPAP)Is under catalytic 

conditions gave tbe aldehyde (18) also in excellent yield. The last steps toward (3b) wee then straightforward. 

Oxidation of (18) with sodium chlorite, using 2-methyl-2-butene as a chlorine scavenger,*6 gave an acid which 

was converted to the (3 b) on coupling with N-acetyl cysteamine using DCCIDMAP, and subsequent 

deprotection with HWpyridine. 
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Scheme 5 (i) EtO2CH2P(O)(OEt)2. LiCl, DIPEA, CH3CN (93%). (ii) DIBAL-D, THF. -78'C (85%). (iii) TsCl. 
DMAP, CH2Cl2 (90%). (iv) LiE@D, THF, -78’C (85%). W LiINH3, EQO, -78’C (97%). (vi) VqNRuO~ NMO. 
4A powdered sieves, CH2C12 (95%). (vii) NaClqL, 2-methyl-Zbutene, KH2PO4, LB~OHIH20 (99%). (viii) N- 
acetylcysteamine, DCC, DMAP, CH2Ct2 @O%). (ix) HF. pyridii, MeCN 030%). 
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